Navigation

Research Assistant (PhD Student – Dr.-Ing) or Postdoctoral Researcher: Machine learning based classification of laryngeal disorders based on video and voice signals for clinical application

Das Team der Professur für Computational Medicine sucht eine/n DoktorandIn/PostDoc

Research Assistant (PhD Student - Dr.-Ing) or Postdoctoral Researcher: Machine learning based classification of laryngeal disorders based on video and voice signals for clinical application

Das Aufgabengebiet umfasst u. a.

The goal of the project is the development of classification algorithms to be integrated in a clinically usable software tool for diagnostics. The algorithms are intended to rate voice quality and laryngeal dynamics based on endoscopic imaging data and the acoustic voice signal. Three classificators including grading of severity of disorders have to be developed based on: 1) endoscopic videos; 2) acoustic data; 3) combined video and acoustic data. Video data will stem from clinical high-speed video recordings (> 2000 Hz), which allow capturing the rapid movement of the vocal folds, which oscillate with 100 – 400 Hz. Acoustic data is the synchronous recorded voice signal. Data is already recorded and will continuously collected during the project by Medical Doctors. The project has the following goals and topics:


1. Labeling of data, based on clinical diagnose.

2. Developing of machine learning based algorithms (e.g. DNN) for classifying / grading severity of laryngeal pathologies that enable the quantification of disorder and actual treatment status.

3. Develop three classifiers, based on 1) endoscopic videos; 2) acoustic data; 3) combined videos and acoustic data

4. Code and algorithms will be first developed and implemented in Python and then transferred to C#/.NET.

5. Source code documentation is mandatory, since the algorithms are intended to be used in clinical environment.


Supervision enabled by the membership of Prof. Döllinger (supervisor) at the Technische Fakultät (Department Informatik). Our team is highly interdisciplinary. Our division has several collaborations with technical and natural science chairs at FAU (Dept. CS 5, Dept. CS 9, and Chair for Applied Mathematics II) as well as with internationally highly recognized Universities; e.g. UCLA; NYU, University of Sydney, McGill.

Notwendige Qualifikation

• M.Sc. in medical engineering, computer science, computational engineering, mathematics

• Requirement 1: Knowledge in pattern recognition, machine learning and especially deep learning

• Requirement 2: Programming skills in Python and preferable in an object-oriented language (preferably C#/.NET)

• Structured and independent working practice, good communication and English skills

Wünschenswerte Qualifikation

Information on preliminary and previous work for this project – the work in this project will be based on the experience of these work:


1. P. Schlegel, S. Kniesburges, S. Dürr, A. Schützenberger, M. Döllinger. Machine learning based identification of relevant parameters for functional voice disorders derived from endoscopic high-speed recordings. Scientific Reports, 10(1):10517; 2020.


2. P. Schlegel, A. Kist, M. Semmler, M. Döllinger, M. Kunduk, S. Dürr, A. Schützenberger. Determination of clinical parameters sensitive to functional voice disorders applying boosted decision stumps. IEEE J Transl Eng Health Med, vol. 8, EPub, no. 9098960, 2020.

Bemerkungen

Time frame: best would be 01.08.2021, or as soon as possible

Application (CV, certificates, skills) via Email favored

Bewerbungsschluss
31.05.2021

Detailinformationen

Stellenbezeichnung
Research Assistant (PhD Student – Dr.-Ing) or Postdoctoral Researcher: Machine learning based classification of laryngeal disorders based on video and voice signals for clinical application
Besetzung zum
01.08.2021

Entgelt
TV-L-E13 (je nach Qualifikation und persönlichen Voraussetzungen)
Teilzeit / Vollzeit
Vollzeit
Befristung
3 Jahre
Reason for limitation
befristetes Forschungsvorhaben

Kontaktperson für weitere Informationen
Prof. Dr.-Ing. Michael Döllinger
Telefon: +49 9131 85-33814
E-Mail: michael.doellinger@uk-erlangen.de
Phoniatrische und Pädaudiologische Abteilung in der Hals-Nasen-Ohren-Klinik
Phoniatrische und Pädaudiologische Abteilung der Hals-Nasen-Ohren-Klinik, Waldstr 1
91054 Erlangen Bayern
Übersicht

Für alle Stellenausschreibungen gilt: Die Friedrich-Alexander-Universität fördert die berufliche Gleichstellung der Frauen. Frauen werden deshalb ausdrücklich aufgefordert, sich zu bewerben.

Schwerbehinderte im Sinne des Schwerbehindertengesetzes werden bei gleicher fachlicher Qualifikation und persönlicher Eignung bevorzugt berücksichtigt, wenn die ausgeschriebene Stelle sich für Schwerbehinderte eignet. Details dazu finden Sie in der jeweiligen Ausschreibung unter dem Punkt "Bemerkungen".

Bei Wunsch der Bewerberin, des Bewerbers, kann die Gleichstellungsbeauftragte zum Bewerbungsgespräch hinzugezogen werden, ohne dass der Bewerberin, dem Bewerber dadurch Nachteile entstehen.

Ausgeschriebene Stellen sind grundsätzlich teilzeitfähig, es sei denn, im Ausschreibungstext erfolgt ein anderweitiger Hinweis.