Research Assistant (PhD Student – Dr.-Ing.) or Postdoctoral Researcher (TV-L E13 -100%) starting ASAP

*Universitätsklinikum Erlangen, Medical School Division of Phoniatrics and Pedriatic Audiology at the Department of Otorhinolaryngology Head & Neck Surgery, Working Group Computational medicine* State-of-the-art medicine and nursing care you can rely on! - Since being founded in 1815, Universitätsklinikum Erlangen has offered medicine of the highest standard and incorporated the latest insights from medical research and state-of-the-art equipment into diagnosis and therapy. More than 8000 employees from approximately 50 different occupations are needed to provide the wide range of services offered by Universitätsklinikum Erlangen, ensuring our patients receive the very best care around the clock.

Research Assistant (PhD Student - Dr.-Ing.) or Postdoctoral Researcher (TV-L E13 -100%) starting ASAP

Das Aufgabengebiet umfasst u. a.

Topic: Deep learning networks & feature analysis to understand speech-motor-control processes in hearing
impaired patients


Speech production is a highly complex process involving the coordination of the respiratory, laryngeal, and oral motor systems as well as a large network of brain regions being involved in motor, somatosensory, and auditory tasks. The auditory feedback plays an important role in tuning the so called speech motor control (SMC) system. It is well known that auditory deprivation, due to hearing loss, may result in significant deteriorations of speech processes.

The central objective in this study on SMC in hearing impaired patients is the identification of the impact of disturbed auditory input on audio-kinesthetic processes. By applying and analyzing multi-sensor based data including laryngeal high-speed imaging, electroencephalography (EEG), and the acoustic voice signal the project aims to delineate the interaction between auditory perception and motoric.
Your tasks: (1) Develop and find machine learning approaches to reveal differences in underlying SMC parameters in high-speed videos, EEG, and acoustic data between normal hearing subjects and hearing impaired. This yields clinical relevant parameters (feature analysis) which represent SMC deterioration. (2) Support execution of the experiments with another PhD student within the project.

Supervision is enabled by the membership of Prof. Döllinger (supervisor) at the Technische Fakultät (Department Informatik). Our team is highly interdisciplinary and has several collaborations with technical and natural science chairs at FAU. In this project we cooperate with Prof. Hoppe (ENT hospital), Prof. Nöth (LS Informatik 9) and Dr. Abur (Netherlands) We foster personal development and exposure to an international, cutting-edge environment.

Notwendige Qualifikation

• M.Sc. / PhD in artificial intelligence, data science, computer science, mathematics, medical
engineering, computational engineering, or similar

• Profound knowledge in machine learning methods (e.g. deep learning, …)

• Programming skills in Python and / or similar

• Structured and independent working practice, good communication and English skills

Bemerkungen

We offer:
• A secure, interesting job in a motivated, open-minded team
Careful and qualified training and support for the new challenge
• A varied and responsible field of activity with individual development opportunities
• Comprehensive health promotion offers
• All benefits of the public service incl. supplementary pension plan of the Versorgungsanstalt des Bundes und der Länder (VBL) (Federal and State Government Employees' Retirement Fund)
• Family-friendly environment and, where appropriate, places in a dormitory
• Crediting of work experience possible

Bewerbungsschluss
14.12.2022

Detailinformationen

Stellenbezeichnung
Research Assistant (PhD Student – Dr.-Ing.) or Postdoctoral Researcher (TV-L E13 -100%) starting ASAP
Besetzung zum
16.01.2023

Entgelt
TVL E13 –100% (je nach Qualifikation und persönlichen Voraussetzungen)
Teilzeit / Vollzeit
Vollzeit
Befristung
3 years
Befristungsgrund
befristetes Forschungsvorhaben

Kontaktperson für weitere Informationen
Prof. Dr.-Ing. Michael Döllinger
Telefon: +49 9131 85-33814
E-Mail: michael.doellinger@uk-erlangen.de
Phoniatrische und Pädaudiologische Abteilung in der Hals-Nasen-Ohren-Klinik
Phoniatrische und Pädaudiologische Abteilung der Hals-Nasen-Ohren-Klinik, Waldstr 1
91054 Erlangen Bayern
Übersicht

Für alle Stellenausschreibungen gilt: Die Friedrich-Alexander-Universität fördert die berufliche Gleichstellung der Frauen. Frauen werden deshalb ausdrücklich aufgefordert, sich zu bewerben.

Schwerbehinderte im Sinne des Schwerbehindertengesetzes werden bei gleicher fachlicher Qualifikation und persönlicher Eignung bevorzugt berücksichtigt, wenn die ausgeschriebene Stelle sich für Schwerbehinderte eignet. Details dazu finden Sie in der jeweiligen Ausschreibung unter dem Punkt "Bemerkungen".

Bei Wunsch der Bewerberin, des Bewerbers, kann die Gleichstellungsbeauftragte zum Bewerbungsgespräch hinzugezogen werden, ohne dass der Bewerberin, dem Bewerber dadurch Nachteile entstehen.

Ausgeschriebene Stellen sind grundsätzlich teilzeitfähig, es sei denn, im Ausschreibungstext erfolgt ein anderweitiger Hinweis.